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Abstract

As audiology strives for cost containment, standardization, accuracy of tests,
and accountability, greater use of automated tests is likely. Highly skilled
audiologists employ quality control factors that contribute to test accuracy, but
they are not formally included in test protocols, resulting in a wide range of
a c c u r a c y, owing to the various skill and experience levels of clinicians. A
method that incorporates validated quality indicators may increase accuracy
and enhance access to accurate hearing tests. This report describes a quality
assessment method that can be applied to any test that (1) requires behavioral
or physiologic responses, (2) is associated with factors that correlate with
a c c u r a c y, and (3) has an available independent measure of the dimension being
assessed, including tests of sensory sensitivity, cognitive function, aptitude,
academic achievement, and personality. In this report the method is applied
to AMTAS™, an automated method for diagnostic pure-tone audiometry.

Key Words: AMTAS™, audiometry, automated audiometry, cross-validation,
Qualind™, quality assessment

Abbreviations:  A M TAS™ = Automated Method for Testing Auditory Sensitivity;
Cn = set of coefficients for QIn; K = a constant; Q = psychometric dimension
that is tested; Qi = independent measure of Q; Qm = measure of Q produced
by a test; QA = absolute difference between Qm and Qi l Qm - Qil; QAa v g = average
of QA for all Sn; Q Aav g = predicted value of QAa v g; QAi - a v g = average 
absolute d ifference between two independent measures of Q; 
QIn = set of quality indicators that are used to predict the accuracy of Qm;
Qualind™ = method for predicting the accuracy of an automated test result;
Sn = set of n stimuli used to test Q; SDi = standard deviation associated with
QAi-avg; STTR = Small Business Technology Transfer Program; ZQA = Z score
for QAavg based on SDi

Sumario 

Conforme la audiología lucha por contener costos, es posible ver cada vez
más estandarización, exactitud en las pruebas, rendición responsable de
cuentas y use de pruebas automatizadas. Los audiólogos altamente calificados
emplean factores de control de calidad que contribuyen en la exactitud de las
pruebas, pero éstos no están formalmente incluidos en los protocolos de
evaluación, resultando en una amplia gama de exactitudes, relacionada con
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The availability of powerful, low-cost
computers and their incorporation into
diagnostic test equipment provides an

increasing capability to automate diagnostic
testing in audiology and other health fields.
At the same time, current health-care
economics requires greater attention to
efficiency and cost containment. In addition
to efficiency and lower cost, automation offers
other advantages such as standardization,
increased accuracy, quality assessment,
increased accessibility, and integration into
patient databases and electronic medical records. 

When hearing tests are conducted by
highly skilled audiologists, the clinician
employs a variety of quality control factors
that contribute to test accuracy. Because
these factors are not formally included in
hearing test protocols, there is a wide range
of quality of results, owing to the various
skill and experience levels of clinicians.
Automation provides the capability to
quantitatively track these factors and
formally incorporate them into the test
results. Quality assessment of test results is
particularly important for automated
procedures or other tests in which an expert
observer is not present during the test to
detect problems that may impact the accuracy
of results.

In considering methods for assessing the
accuracy of test results, it is important to
distinguish between tests that produce binary
results (pass-fail, disease–no disease, normal-
abnormal) and those that produce continuous
measurements, such as pure-tone audiometry,
blood pressure, visual acuity, and intelligence
tests. The latter are perhaps better referred
to as “measurements,” “the assignment of
numerals to objects or events according to
rules” (Stevens, 1951). Measurements, then,
can become the basis for t e s t s, rules for
making decisions based on observations.
From this point of view, pure-tone audiometry
is a measurement. It becomes a test when
rules are employed to make clinical decisions
based on the results, such as the
categorization of hearing loss severity or
type. However, it is common in audiology,
medicine, and psychology to refer to
measurements that are made for the purpose
of making a diagnosis or evaluating a
treatment as “tests.”  Methods for evaluating
the accuracy of binary tests are described in
the biostatistics literature (Zhou et al, 2002;
Pepe, 2003). 

This report describes a quality
assessment method (Qualind™) that can be
applied to any measurement that meets the
following requirements: (1) the procedure

los diferentes de niveles de habilidad y experiencia de los clínicos. Un método
que incorpore indicadores validados de calidad puede incrementar la exactitud
y aumentar el acceso a pruebas precisas de audición. Este reporte describe
un método de evaluación de calidad, que puede ser aplicado a cualquier prueba
que (1) requiera de una respuesta conductual o psicológica, (2) esté asociada
con factores que correlacionen con la exactitud, y (3) que posea una medida
disponible independiente de la dimensión evaluada, incluyendo pruebas de
sensibilidad sensorial, de función cognitiva, de aptitud, de logro académico y
de personalidad. En este reporte el método es aplicado a A M TAS™, un
método automatizado para audiometría diagnóstica de tonos puros.

Palabras Clave: A M TA S ™ , audiometría,  audiometría automatizada, validación
cruzada, Qualind™, evaluación de calidad

Abreviaturas: AMTAS™ = Método automatizado para Evaluar Sensibilidad
Auditiva; Cn = set de coeficientes para QIn; K = una constante; Q = dimensión
psicométrica que es evaluada; Qi = medida independiente de Q; Qm = medida
de Q producida por una prueba; QA = diferencia absoluta entre Qm y Qi lQm-
Qil; QAavg = promedio de QA para todas las Sn; QAavg = valor de predicción
de QAa v g; QAi - a v g = diferencia promedio absoluta entre dos medidas
independientes de Q; QIn = set de indicadores de calidad que se usa para
predecir la exactitud de Qm; Qualind™ = método para predecir la exactitud
de un resultado de una prueba automatizada; Sn = set de n estímulo usados
en la prueba Q; SDi = desviación estándar asociada con QAi-avg; STTR =
Programa de Transferencia de Tecnología para Pequeños Negocios; ZQA =
puntaje Z para QAavg con base en la DSi
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provides a continuous measurement of the
dimension being tested; (2) the measurements
result from behavioral or physiologic
responses from the individual being tested;
(3) quantifiable subject characteristics and
behaviors exist that correlate with test
accuracy; and (4) an independent measure of
the dimension being assessed is available.
Tests of this type include (1) tests of sensory
sensitivity to physical stimuli including tests
of hearing, vision, tactile sensation, and
olfaction; (2) tests of cognitive function; (3)
aptitude tests; (4) academic achievement
tests; and (5) personality tests. 

Qualind is based on a class of statistical
techniques known as “response surface
m e t h o d o l o g y.” These techniques “seek to
relate a response, or output variable to the
levels of a number of p r e d i c t o r s , or i n p u t
variables, that affect it” (Box and Draper,
1987, p. 1). Although not specifically
addressed in the audiology literature, it is
widely recognized that certain observable
variables are predictive of the accuracy of
pure-tone test results. The ubiquitous
“reliability” judgment found on audiogram
forms assumes that a skilled audiologist can
observe certain patient behaviors and
characteristics that predict accuracy. If this
is the case, then perhaps these variables can
be quantitatively tracked and exploited for
accuracy assessment, which is amenable to
statistical validation. Once derived, the
predictive equation can be validated by
independent data sets, by the method of
c r o s s - v a l i d a t i o n (Schneider and Moore, 2000).

The development of Qualind for assessing
the accuracy of an automated method for
pure-tone audiometry, based on response
surface methodology, is described. The
automated audiometric method, AMTAS™,
is described below. In Experiment 1, a
predictive equation was derived that
calculates the estimated average difference
between AMTAS and manual thresholds. In
Experiments 2 and 3, the accuracy of the
predictive equation was cross-validated
against two independent data sets.

AMTAS™: AUTOMATED METHOD
FOR TESTING AUDITORY

SENSITIVITY

AM TAS (U.S. Patent #6,496,585) is an
automated method for obtaining a

diagnostic pure-tone audiogram, including
a i r- and bone-conduction thresholds with
masking in the nontest ear and with
quantitative quality indicators.  The
development and testing of the method was
supported by the National Institutes of
Health Small Business Technology Transfer
(STTR) Program. The results of a comparison
between AMTAS and manual testing will be
reported separately.

A M TAS is a single interval, Ye s - N o ,
psychophysical procedure with feedback.
Catch trials are presented randomly
throughout the test to allow a quantitative
measurement of false-alarm rate. A “quality
check” is performed after each threshold
determination by presenting a stimulus with
a higher intensity than the threshold level.
A “No” response to that stimulus is a “Quality
Check Fail.” Masking is always presented
to the nontest ear by a proprietary method
that estimates the appropriate masker level
from the signal level and interaural
attenuation of the transducers. At the
conclusion of the test, A M TAS identifies
“masking alerts,” thresholds for which
overmasking or undermasking may have
occurred.

The method requires that the air- and
bone-conduction transducers are placed at
the beginning of the test without the
requirement that transducers be moved
during the evaluation. The bone vibrator is
placed on the forehead. Prototype
nonoccluding earphones are used so that
bone-conduction thresholds could be
determined without contamination by the
occlusion effect. The development of a
nonoccluding earphone for audiometry is the
subject of a related STTR project. 

The development of the quality
assessment method was based on a
comparison of audiograms obtained by
A M TAS and by manual testing performed
by expert audiologists.

QUALIND™: A METHOD OF
ASSESSING THE ACCURACY OF AN

AUTOMATED TEST

Qualind (patent pending) is a method
for determining the accuracy of a test result
from quantifiable factors (subject
characteristics and behaviors) that are
correlated with test accuracy. The accuracy



of the prediction is dependent upon the
strength of the association between the factors
and the test results. The process of
development and validation of Qualind for a
specific test is comprised of the following
steps.

1. Identify a psychometric quantity,
“Q,” that can be measured by a
properly constructed test. 

2. Develop a test of Q that requires
behavioral or physiologic responses
to a set of stimuli Sn such that the
aggregate of the responses to Sn
provides a quantitative measure Qm
of Q. Sn could be physical signals,
images, or questions which require
behavioral or physiologic responses
in accordance with well-defined
instructions and procedures.

3. Identify n measurable behaviors,
Q In, that may be related to the
quality of the subjects’ responses to
Sn.

4. Identify an independent measure of
Q, Qi, against which Qm can be
compared.

5. Obtain a data set by testing a sample
of a defined population providing
values of Qm, Qi, and QIn. For each
Sn calculate the absolute difference
QA = lQi - Qml, which is regarded as
a measure of the accuracy of Qm.

6. Calculate QAa v g, the average QA f o r
all of Sn. QAavg represents a global
measure of test accuracy for the
subject. QAa v g could be calculated
on subsets of Sn as well to obtain
accuracy estimations of various
components of a test. In audiometry
for example, separate accuracy
predictions could be derived for air
conduction versus bone conduction,
right ear versus left ear, high
frequencies versus low frequencies,
and so on

7. Derive a predictive equation to
estimate Q Aa v g from QIn. The
predictive equation may take the
form

QAavg = f(QIn) (1)

The italics indicate a calculated
estimate, to distinguish it from
Q Aa v g, which is a measured average
difference between Qm and Qi. One

way to obtain f(QIn) is to perform a
multiple regression of QIn on QAa v g.
The strength of the regression
determines the accuracy of QAavg.

8. If desired, Q Aa v g can be converted to
categorical data such as a scale
consisting of descriptive terms like
“good,” “fair,” and “poor.” These
categories can be based on the
variance associated with QAa v g for a
certain population.

In the case of AMTAS, the psychometric
quantity (Q) that is measured is hearing
sensitivity as expressed by the pure-tone
audiogram, including air- and bone-
conduction thresholds for standard
audiometric frequencies. The independent
measure Qi is the audiogram obtained
manually by an expert audiologist. For each
audiometric threshold, QA = lQi - Qml i s
obtained by determining the absolute
difference in auditory thresholds obtained
by AMTAS and by the manual method. The
average absolute difference for all test stimuli
employed in the test is QAavg. 

QI candidates can be any quantifiable
subject characteristic or behavior that may
be related to test accuracy. Potential A M TA S
quality indicators are shown in Table 1.

EXPERIMENT 1: DERIVATION AND
VALIDATION OF PREDICTIVE

EQUATION

Subjects and Methods

Data were collected at three sites chosen
to sample a wide range of settings, patient
demographics, and hearing loss
characteristics. Subjects were recruited from
the audiology clinics at each site. A patient
was eligible for the study if the clinician
judged that the patient was capable of
understanding instructions that are typically
provided for pure-tone audiometry. No
constraints were placed on the degree or type
of hearing loss. Immittance testing was not
considered. The test sites, subject samples,
and hearing loss characteristics are shown in
Table 2. 

Each site was equipped identically with
commercial audiometers (Grason-Stadler
GSI-61) and personal computers. Manual
testing was performed with TDH-50
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earphones calibrated in accordance with
ANSI S3.6-1996 (American National
Standards Institute, 1996). For automated
testing, a prototype, nonoccluding,
circumaural earphone was used. Reference
Equivalent Sound Pressure Levels for these
earphones were derived by the method
described in Annex D Par. D.4 of the standard.

For A M TAS testing, the computer
controlled the audiometer, acquired a trial-

by-trial history of the entire test, recorded
thresholds, tracked the quality indicators,
and transmitted the data files to a central
server via a secure internet communication
protocol. For manual testing, the computer
logged the characteristics of each stimulus
that was presented, including frequency,
i n t e n s i t y, ear, mode (air or bone), and time of
presentation, and stored threshold and
masking values.
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Table 1. QI Definitions
AMTAS QUALITY INDICATORS DEFINITION

Patient Age§ Self-explanatory

Patient Gender§ Self-explanatory

Masker Alert Rate The number of thresholds for which the masking noise presented to the nontest 
ear may have been either too low or too high divided by the number of measured 
thresholds.

Time per Trial The elapsed time averaged across all observation intervals

Average Number of Trials for The total number of observation intervals divided by the number of measured 
Threshold§ thresholds

Elapsed Time§ The total elapsed time for the test

False Alarm Rate The number of false alarms (trials in which the subject reported the presence of a 
stimulus when no stimulus was presented) divided by the total number of catch 
trials (trials in which there was no stimulus)

Average Test-Retest Difference The average difference in threshold measures obtained for stimuli that were tested
twice

Quality Check Fail Rate The total number of occurrences of quality check fails (failure to respond to stimuli
presented above threshold) divided by the number of measured thresholds

Air-Bone Gap >50 dB Number of air-bone gaps (difference between thresholds obtained for air- and 
bone-conducted stimuli for each frequency/ear combination) that exceed 50 dB

Air Bone Gap <-10 dB Number of air-bone gaps (difference between thresholds obtained for air- and 
bone-conducted stimuli for each frequency/ear combination) that are less than -10 dB

Average Air-Bone Gap The average difference between air-conduction threshold and bone-conduction 
threshold

§Omitted from final analysis.

Table 2. Experiment 1 Subject Characteristics
Site n Gender Age (Yrs.) Pure-Tone Average§ Pure-Tone Average§ Pure-Tone Average§

Male Mean (SD) Better Ear (dB) Poorer Ear (dB) Interaural Difference (dB)  
Female Range Mean (SD) Mean (SD) Mean (SD) 

Range Range Range

University 54 32 52 (18) 29 (19) 43 (23) 11 (13)
of Minnesota 22 16 to 87 -3 to 70 1 to 104 0 to 69

University 21 11 47 (22) 29 (20) 35 (21) 6 (7)
of Utah 10 12 to 76 -5 to 55 0 to 64 0 to 33

VA Mountain 45 44 72 (9) 50 (15)  60 (18) 10 (12) 
Home 1 48 to 93 19 to 94 30 to 104 0 to 48

All 120 87 59 (18) 37 (20) 48 (23) 11 (13)
33 12 to 93 -5 to 94 0 to 104 0 to 69

§ 0.5, 1.0, 2.0, and 4.0 kHz



Data were collected by highly experienced
audiologists at each test site. Testers were
instructed to perform manual audiometry
using the clinical methods that they normally
use when testing patients. Each tester was
validated against another audiologist (RHM)
on six subjects at each site. The six subjects
were chosen randomly and tested on site by
the two testers in immediate succession.
I n t e r-tester reliability for the three sites
ranged from 0.95 to 0.97 (Table 3). The inter-
tester validation study produced
measurements of the differences in thresholds
measured by the two audiologists. These data
were used to establish accuracy categories for
Qualind predictions.

Each subject was tested by AMTAS and
by manual audiometry in immediate
succession. The order of the tests was
randomized. When manual testing was
conducted second, the tester was not aware
of the AMTAS results.

An equation that calculates the predicted
average absolute difference between A M TA S
and manual thresholds, QAavg, was derived
by performing a multiple regression between
QAavg and the quality indicators that were
selected from Table 1. QI measures that did
not contribute to the strength of the
regression were discarded. For the remaining
factors, the multiple regression returned a set
of coefficients (Cn) and an intercept (K). The
resulting formula is

QAavg = lQi - Qmla v g = f(QIn) = Σ(C·QI) + K ( 2 )

Note that QAavg relies only on QIn and
not Qi or Qm. It is an estimate of the accuracy
of the test result (relative to results obtained
by an expert professional). Its accuracy is
determined by the strength of the multiple
regression. 

Results

A multiple regression of the quality
indicators selected from Table 1 and QAavg
revealed that the following four did not
contribute to the strength of the
regression–age, gender, average number of

trials, and elapsed time. These were discarded
and the multiple regression repeated with the
remaining eight. The resulting regression
coefficient was 0.84, indicating that the eight
quality indicators account for 71% of the
variance. This result suggests that QAavg is
a good predictor of QAa v g. However, the value
of Q Aa v g is not a very useful measure for
judging the accuracy of an individual
audiogram. An additional step is necessary
to provide the clinician with a useful quality
assessment indicator.

One way to interpret Q Aa v g is to compare
it to differences obtained between audiograms
obtained by two experienced audiologists on
the same patient. That is, two independent
measures of Qi are obtained. The inter- t e s t e r
validation study provided a basis for this
type of comparison. That study provided a
measurement of the average absolute
threshold difference for two audiologists:

QAi-avg = lQAi1 - QAi2l (3)

The value of QAi - a v g from that study was
4.62 dB with a standard deviation SDi of
4.13. Using these results, each Q Aa v g w a s
converted to a Z score that is the distance in
standard deviation units from the mean
average absolute difference for two
audiologists. The Z score is calculated by

ZQA = (QAavg - QAi-avg)/SDi (4)

These Z scores were then categorized
into three groups, Good, Fair, and Poor, using
the rules given in Table 4. This process
resulted in the occurrences of Good, Fair,
and Poor results in the data set of 120
individuals with hearing loss shown in Table 5.

An examination of the audiograms
revealed a high degree of face validity to the
categorical data. That is, those in the Good
category were generally free of obvious errors
that would be evident to skilled audiologists,
and those in the Poor category generally were
associated with obvious errors such as
unlikely audiometric configurations, high
false alarm rates either in the aggregate or
for specific stimuli, and theoretically
impossible results such as air-bone gaps >50
dB or <-10 dB.
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Table 3. Inter-tester Correlation Coefficients for Each Test Site
Site University of Minnesota University of Utah VA Mountain Home

Inter-tester Correlation 0.95 0.97 0.97



Agreement between categories based on
predicted and actual accuracy (i.e., Q Aa v g v s .
QAavg) is shown in Table 6. Overall, for 78%
of the cases, the predicted category was
identical to the actual category (sum of values
in bold divided by total). Sixty-nine percent
of the cases were predicted to have “Good”
accuracy, and of those, 92% had measured
accuracy in the “Good” range. Agreement for
the other two categories was not as good. Of
25 cases predicted to be in the “Fair” category,
ten (40%) had actual accuracy in the “Fair”
range. Of twelve cases predicted to have
“Poor” accuracy, seven (58%) had actual
accuracy in the “Poor” range.

Perhaps the most serious error is one in
which accuracy is predicted to be “Good” and
is actually “Poor.” Only one error of this type
occurred. The reverse case is one in which
accuracy is predicted to be “Poor” but is
actually “Good.” Two errors of this type
occurred. These may require unnecessary
retesting but are not likely to result in a
mischaracterization of the hearing loss if the
retesting is done by an experienced
audiologist.

Q Aa v g is plotted against QAa vg in Figure
1. The categories are shown by the shaded
regions. The correlation between QAavg and
Q Aa v g is by definition identical to the multiple
regression coefficient of 0.84. The figure
illustrates that the seven most inaccurate
audiograms (the boxed data points in Figure
1) were correctly categorized in the Poor
category. Most of these cases were subjects
who did not understand the instructions
regarding masking and voted “Yes” when the
masking was audible whether or not they
heard the tone. Although these are clearly
invalid audiograms, they were left in the
analysis because it is important to test the
power of Qualind to detect such cases. 

EXPERIMENT 2: CROSS-VALIDATION
AGAINST AN INDEPENDENT DATA SET 

The method of cross-validation provides an
evaluation of a predictive equation by

determining the accuracy of predictions for
data sets other than the one from which the
predictive equation was derived (Schneider
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Table 4. Category Definitions
Category ZQA Score

Good ZQA ±1

Fair 1 < ZQA < 2

Poor ZQA ± 2

Table 5. Number of Occurrences of Each QAavg
Category

Category Number of Occurrences %

Good 83 69

Fair 25 21

Poor 12 10

Table 6. Predicted versus Actual Category Agreement between AMTAS and Manual Audiograms for the
Subjects in Experiment 1

Predicted Category

Good Fair Poor TOTAL
n n n n
% of column % of column % of column %
% of total % of total % of total

Good 76 11 2 89
92 44 17 74
63 9 2

Fair 6 10 3 19
7 40 25 16
5 8 3

Poor 1 4 7 12
1 16 58 10
1 3 6

TOTAL n (%) 83 (69) 25 (21) 12 (10) 120



and Moore, 2000). In Experiment 2 a small
group of older subjects was tested by methods
identical to those of Experiment 1 for this
purpose.

Subjects and Methods

Eight adult subjects (six males, two
females) ranging in age from 64 to 85 years
were tested at one test site (University of
Minnesota). Patient characteristics are
summarized in Table 7. Hearing losses varied
over a wide range indicated by the pure-tone
averages shown in the table. The test
procedure was identical to that of Experiment
1. It was not possible to derive a new
predictive equation from this data set because
of the small number of subjects. Instead,
predicted absolute differences were calculated
using the regression formula derived from
Experiment 1.

Results

A comparison of predicted and actual
categories of average absolute differences
between A M TAS and manual audiograms
for the subjects in Experiment 2 is shown in
Table 8. For seven of eight cases (87%), the
predicted and actual categories were the
same. 

A comparison of the predicted and
measured average absolute differences
between A M TAS and manual audiometry
are shown in Figure 2. The figure
demonstrates that the one case for which
the predicted and measured differences fell
into different categories was a near miss (see
circled data point in Figure 2). 

The correlation coefficient between the
measured and predicted average absolute
differences was 0.59, indicating that the
quality indicators account for 35% of the
variance in the differences between QAa v g
and QAavg . The lower correlation coefficient
(0.59) compared to the multiple regression
coefficient obtained in Experiment 1 (0.84)
may have resulted from the narrow range of
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Figure 1. Predicted average absolute differences
between A M TAS and manual thresholds plotted
against the measured average absolute difference.
Average absolute differences are the absolute values
of the differences between A M TAS and manual
thresholds averaged across all thresholds (air and
bone, both ears) for each subject. The predicted aver-
age absolute differences are calculated from the
regression formula produced by the process described
in the text. The Good, Fair, and Poor regions are
based on the average differences between manual
thresholds obtained by two audiologists for the same
subjects. (See text for full explanation.) The seven
cases with the poorest accuracy (enclosed in the
square) were correctly predicted to have the poorest
accuracy.

Table 7. Experiment 2 Subject Characteristics (n = 8) and Results
Age Pure-Tone Average Pure-Tone Average Interaural Difference Difference between  
(years) (dB) Better Ear (dB) Worse Ear in Pure-Tone Predicted and Measured 

(0.5, 1, 2, 4 kHz) (0.5, 1, 2, 4 kHz) Average (dB) Absolute Difference (dB)

Mean 70.2 25 35 10 1.2

SD 7.2 12 21 11 0.9

Range 64–85 9–44 13–76 1–35 0.9–3.0



the differences in Experiment 2. Unlike the
heterogeneous distribution of accuracy in
Experiment 1, these subjects were quite
homogeneous, indicated by the substantial
difference in the standard deviations for

average absolute difference (4.7 in
Experiment 1 vs. 2.4 in Experiment 2). All of
the results fell into the “Good” and “Fair”
categories with none in the “Poor” category.
Because the correlation statistic is highly
dependent on the range of the data (Games
and Klare, 1967, p. 369), it is expected that
the correlation in Experiment 2 would be
lower than the multiple regression in
Experiment 1. 

To examine the possibility that the lower
correlation in Experiment 2 may have been
influenced by the narrower range of results
relative to Experiment 1, a subset of subjects
from Experiment 1 was selected such that the
range of values of QAavg was identical to the
range in Experiment 2. The correlation
coefficient for this data set is 0.45, lower than
the 0.59 obtained in Experiment 2. This result
suggests that over that range, the relationship
between QAa v g and Q Aa v g is stronger in
Experiment 2 than in Experiment 1.

The average absolute difference between
the measured and predicted average absolute
differences was 1.9 dB (range = 0.4–2.4 dB),
suggesting a high degree of predictability of
QA from the quality indicators.

The categorical agreement (87%), the
correlation between QAa v g and Q Aa v g, and the
small mean difference between predicted and
measured accuracy indicate that the
regression equation produced in Experiment
1 provides a high degree of predictability for
the results of Experiment 2. In addition, the
slopes and intercepts of the best fit regression
lines (see equations in Figures 1 and 2) are
s i m i l a r, suggesting very similar relationships
between QAa v g and QAavg in the two subject
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Table 8. Predicted versus Actual Category Agreement between AMTAS and Manual Audiograms 
for the Subjects in Experiment 2

Predicted Category

Good Fair TOTAL
n n n
% of column % of column %
% of total % of total

Good 5 1 6
100 33 75
63 13

Fair 0 2 2
0 67 25
0 25

TOTAL n (%) 5 (63) 3 (37) 8

Figure 2. Predicted and measured average absolute
differences between AMTAS and manual thresholds
for the eight listeners tested in Experiment 2. Pre-
dictions were based on the regression equation derived
in Experiment 1. The “GOOD” and “FAIR” labels
indicate the ranges determined from average differ-
ences between manual testing performed by two
audiologists for the same subjects. The horizontally
aligned “GOOD” and “FAIR” labels indicate the pre-
dicted categories. The vertically aligned labels indi-
cate the categories based on measured differences.



groups. The results of this cross-validation
analysis suggest that a regression equation
obtained from one data set obtained by
AMTAS and manual testing are useful for
predicting the accuracy of audiograms in
another data set, provided the subjects are
reasonably similar.

EXPERIMENT 3: CROSS-VALIDATION
FOR INSERT EARPHONES

Subjects and Methods

To determine the extent to which the
predictive equation derived in Experiment 1
might extend to variations in methodology, a
cross-validation study was conducted at the
Minnesota site for a group of subjects tested
with a different earphone. In this study,
A M TAS thresholds were measured with
insert earphones (Etymotic Research ER3A),
and manual thresholds were measured with
supra-aural earphones (Telephonics TDH-
50). Each was calibrated by standard
calibration procedures (American National
Standards Institute, 1996). The ER3A
earphone was coupled to the ear with either
the small or adult standard foam tips. The
appropriate size was selected for each subject,
the foam tip was compressed, and it was
inserted into the ear canal such that the
lateral surface of the tip was at the level of
the entrance to the ear canal. With this
insertion depth, an occlusion effect is expected
that affects low-frequency bone-conduction
thresholds (Dean and Martin, 2000). During
A M TAS testing, both ears were occluded.
During manual audiometry, only the nontest
ear was occluded during bone-conduction
testing. Therefore, a difference in low-

frequency bone-conduction thresholds is
expected that will affect the overall agreement
between A M TAS and manual thresholds.
Subject characteristics are summarized in
Table 9.

Two predictions were derived for each
subject. Q Aa v g was calculated using the
coefficients produced by the multiple
regression performed in Experiment 1. This
is the cross-validation approach. In addition,
a set of coefficients were obtained from a
new multiple regression on the data from
Experiment 3.

Results

The differences between QAa v g and Q Aa v g
for the two predictive equations are shown in
the last two columns of Table 9. In both cases
the average differences were small with the
new regression equation providing smaller
differences and smaller ranges.

The performance of the two equations
for assigning audiograms to categories is
shown in Table 10. Again, the new predictive
equation performed slightly better with 33
cases (92%) correctly classified as “Good”
compared to 31 (86%) for the equation from
Experiment 1. It is not surprising that the
regression based on the data from Experiment
3 would be more predictive than a predictive
equation derived from a different data set.

The superior performance of the new
predictive equation is clearer in Figures 3 and
4, which show the relationship between QAa v g
and QAavg for each predictive equation. The
new multiple regression is 0.68 (which is
equivalent to the correlation between QAavg
and Q Aa v g). The correlation based on the
Experiment 1 predictions is 0.32, and the
plot in Figure 4 shows substantially more
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Table 9. Experiment 3 Subject Characteristics (n = 36) and Results
Age Pure-Tone Pure-Tone Absolute Interaural Cross-Validation: New Regression:    
(years) Average (dB) Average (dB) Difference in Absolute Difference Absolute Difference    

Better Ear Worse Ear Pure-Tone  between Predicted between Predicted  
(0.5, 1, 2, 4 kHz) (0.5, 1, 2, 4 kHz) Average (dB) and Measured and Measured 

Average Absolute Average Absolute  
Difference (dB)a Difference (dB)b

Mean 61.3 39 49 10 1.5 1.0

SD 18.2 22 22 14 1.2 0.8

Range 13 to 86 -4 to 75 3 to 89 0 to 62 0.1 to 4.0 0 to 2.8

a From the coefficients derived in Experiment 1; 
b Predictions from new multiple regression.



scatter for the cross-validation than for the
new predictive equation (Figure 3). In spite
of the larger sample size, the cross-validation
analysis indicated a weaker predictive
relationship compared to the results of
Experiment 2.

Contributing to the poorer performance
of the cross-validation predictions may be
the occlusion effect produced by the insert
earphones. When subjects with conductive
hearing losses were excluded, the bone
conduction thresholds with insert earphones
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Table 10. Predicted versus Actual Category Agreement between AMTAS and Manual Audiograms 
for the Sin Experiment 3

Predicted Category

Cross-Validation New Predictive Equation

Good Fair TOTAL Good Fair TOTAL
n n n n n n
% of column % of column % % of column % of column %
% of total % of total % of total % of total

Good 31 3 34 33 1 34
94 100 94 94 100 94
86 8 92 3

Fair 2 0 2 2 0 2
6 0 6 6 0 6
6 0 6 0

TOTAL (%) 5 (63) 3 (37) 36 (100) 35 (97) 1 (3) 36 (100)

Figure 3. Predicted and measured average absolute
differences between A M TAS and manual thresholds
for the 36 listeners tested in Experiment 3. Pre-
dicted average absolute differences (QAa v g) were cal-
culated from a multiple regression formula based on
this data set. The “GOOD” and “FAIR” labels indi-
cate the ranges determined from average differences
between manual testing performed by two audiolo-
gists for the same subjects. The horizontally aligned
“GOOD” and “FAIR” labels indicate the predicted
categories. The vertically aligned labels indicate the
categories based on measured differences.

Figure 4. Predicted and measured average absolute
differences between AMTAS and manual thresholds
for the 36 listeners tested in Experiment 3. Predicted
average absolute differences (QAa v g) were calculated
from a multiple regression derived in Experiment 1.
The “GOOD” and “FAIR” labels indicate the ranges
determined from average differences between man-
ual testing performed by two audiologists for the
same subjects. The horizontally aligned “GOOD” and
“FAIR” labels indicate the predicted categories. The
vertically aligned labels indicate the categories based
on measured differences.



averaged 9 dB and 6 dB lower (better) at 250
and 500 Hz, respectively, compared to the
supra-aural earphones. These differences did
not occur in Experiments 1 and 2, in which
a nonoccluding earphone was used for
AMTAS testing.

The results of this analysis suggest that
the strength of the predictive equation derived
in Experiment 1 is compromised when an
earphone with different characteristics is
employed. However, the regression derived
from the Experiment 3 data set appeared to
have similar predictive power. Thus, it may
be necessary to derive predictive equations
that are specific to differences in
instrumentation that may differentially affect
results, such as predicting unoccluded bone-
conduction results from measurements
obtained with an occluding earphone.

SUMMARY AND CONCLUSION

Amethod was developed based on response
surface methodology for assessing the

accuracy of a diagnostic audiogram obtained
by a computer-controlled, automated
procedure. A predictive equation was derived
from a multiple regression of a set of
quantitative quality indicators on a measure
of test accuracy, defined as the average
absolute difference between automated and
manually tested thresholds. For a large
subject sample (n = 120), a strong relationship
was found between predicted and measured
a c c u r a c y. The predictive equation was cross-
validated against two independent data sets.
The results suggest that the predictions retain
their accuracy for independent data sets if
similar subjects and methods are employed,
and that new predictive equations may be
required for significant variations in test
methodology. The method may be useful for
automated test procedures when skilled
professionals are not available to provide
quality assurance.
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